Sains Malaysiana 54(12)(2025): 2837-2846

http://doi.org/10.17576/jsm-2025-5412-03

Enhanced Production of Lipase from ‘NC Mutant’ Moulds for Transesterification Reactions(Peningkatan Penghasilan Lipase daripada Kulat Mutant NC untuk Tindak Balas Transesterifikasi)

 

NISA RACHMANIA MUBARIK3, TRISMILAH SISWODARSONO2,* & GALIH CENDANA NABILASANI1

 

1Study Program of Biotechnology, Graduate School of IPB University, Bogor 16680, Indonesia

2Center for Bioindustrial Technology-BRIN (National Innovation Research Agency), Bld.610-614 PUSPIPTEK, South Tangerang, Banten, Indonesia

3Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia

Received: 25 February 2024/Accepted: 17 November 2025

Abstract

Lipase can be used for biodiesel production, specifically in transesterification reactions. Nut C (NC) is a fungal isolate derived from palm kernels and palm kernel waste, capable of producing lipase. The objective of this study was to obtain a mutant mould with higher transesterification activity compared to its wild type counterpart (NC). The mutation process on NC mould was carried out using ultraviolet (UV) radiation followed by ethyl methane sulfonate (EMS). UV-induced mutation on NC produced four isolates, with m4.3NC1 exhibiting higher transesterification activity than the wild type, with an increment of 138.8% (from 0.121 U/mg to 0.168 U/mg). Subsequent EMS mutations of the mutant m4.3NC1 isolate, designated as m5.4NC, increased the transesterification activity from 0.168 U/mg to 2.048 U/mg (1119% increment as compared to the wild type). Molecular identification of the NC isolate showed 100% similarity with the Aspergillus fumigatus CMXY15837 strain. The highest specific enzyme activity of the NC mutant was observed at pH 6 and a temperature of 50 °C. This study showed that the mutation of NC mould using UV, followed by EMS, significantly enhanced its transesterification activity.

Keywords: Ethyl methane sulfonate; lipase; NC mutant mould; transesterification reaction; ultraviolet

 

Abstrak

Lipase boleh digunakan untuk pengeluaran biodiesel, khususnya dalam tindak balas transesterifikasi. Nut C (NC) ialah pencilan kulat yang diperoleh daripada isirung sawit dan sisa isirung sawit yang mampu menghasilkan lipase. Objektif kajian ini adalah untuk mendapatkan kulat mutan yang mempunyai aktiviti transesterifikasi yang lebih tinggi berbanding jenis liarnya (NC). Proses mutasi pada kulat NC dijalankan menggunakan sinaran ultraungu (UV) diikuti oleh etil metana sulfonat (EMS). Mutasi akibat UV pada NC menghasilkan empat pencilan dengan m4.3NC1 menunjukkan aktiviti transesterifikasi yang lebih tinggi daripada jenis liar, dengan kenaikan sebanyak 138.8% (daripada 0.121 U/mg kepada 0.168 U/mg). Mutasi EMS seterusnya terhadap pencilan m4.3NC1 mutan yang ditetapkan sebagai m5.4NC meningkatkan aktiviti transesterifikasi daripada 0.168 U/mg kepada 2.048 U/mg (kenaikan 1119% berbanding jenis liar). Pengenalpastian molekul bagi pencilan NC mendedahkan 100% persamaan dengan strain Aspergillus fumigatus CMXY15837. Aktiviti enzim khusus tertinggi mutan NC diperhatikan pada pH 6 dan suhu 50 °C. Kajian ini menunjukkan bahawa mutasi terhadap mutan NC menggunakan UV diikuti oleh EMS telah meningkatkan aktiviti transesterifikasi dengan ketara.

Kata kunci: Etil metana sulfonat; kulat mutan NC; lipase; tindak balas transesterifikasi; ultralembayung

 

REFERENCES

Adham, N.Z. & Ahmed, E.M. 2009. Extracellular lipase of Aspergillus niger NRRL3; production, partial purification and properties. Indian Journal of Microbiology 49(1): 77-83.

Asci, F., Aydin, B., Akkus, G.U., Unal, A., Endorgmus, S.F., Korcan, S.E. & Jahan, I. 2020. Fatty acid methyl ester analysis of Aspergillus fumigatus isolated from fruit pulps for biodiesel production using GC-MS spectrometry. Bioengineered 11(1): 408-415.

Aziz, R., Aisyah, A. & Ilyas, A. 2016. Sintesis metil ester dari minyak biji Kemiri (Aleurites molluccana) menggunakan metode ultrasonokimia. Al-Kimia 4(1): 21-30.

Banerjee, A., Singh, V., Solanki, K., Mukherjee, J. & Gupta, M.N. 2013. Combi-protein coated microcrystals of lipases for production of biodiesel from oil from spent coffee grounds. Sustainable Chemical Processes 1: 14.

Chandra, P., Enespa, Singh, R. & Arora, P.K. 2020. Microbial lipases and their industrial applications: A comprehensive review. Microbial Cell Factories 19(1): 169.

Colla, L.M., Ficanha, A.M., Rizzardi, J., Bertolin, T.E., Reinehr, C.O. & Costa, J.A. 2015. Production and characterization of lipases by two new isolates of Aspergillus through solid-state and submerged fermentation. Biomed Research International 2015: 725959.

Collin, V.L., Baigori, M.D. & Pera, L.M. 2011. Mycelium-bound lipase production from Aspergillus niger MYA 135 and its potential applications for the transesterification of ethanol. Journal of Basic Microbiology 51(3): 236-242.

Daniel, R.M., Peterson, M.E., Danson, M.J., Price, N.C. Kelly, S.M., Monk, C.R., Weinberg, C.S., Oudshoorn, M.L. & Lee, C.K. 2010. The molecular basis of the effect of temperature on enzyme activity. Biochemical Journal 425: 353-360.

El-Batal, A.I., Farrag, A.A., Elsayed, M. & El-Khawaga, A. 2016. Biodiesel production by Aspergillus niger lipase immobilized on barium ferrite magnetic nanoparticles. Bioengineering (Basel) 3(2): 14.

Eregie, S.B., Sanusi, I.A., Kana, G.E.B. & Olaniran, A.O. 2024. Effect of ultra‑violet light radiation on Scenedesmus vacuolatus growth kinetics, metabolic performance, and preliminary biodegradation study. Biodegradation 35: 71-86. 

Goto, N., Bazar, G., Kovacs, Z., Kunisada, M., Morita, H., Kizaki, S., Sugiyama, H., Tsenkova, R. & Nishigori, C. 2015. Detection of UV-induced cyclobutane pyrimidine dimers by near-infrared spectroscopy and aquaphotomics. Scientific Reports 5: 11808.

Ifadah, R.A., Kusnadi, J. & Wijayanti, S.D. 2016. Strain improvement Acetobacter xylinum menggunakan ethyl methane sulfonate (EMS) sebagai upaya peningkatan produksi selulosa bakteri. Agroindustry Food Journal 4(1): 273-282.

Iftikhar, T., Niaz, M., Abbas, S.Q., Zia, M.A., Ashraf, I., Lee, K.J. & Haq, I.U. 2010. Mutation-induced enhanced biosynthesis of lipases by Rhizopus oligosporus var. microsporus. Pakistan Journal of Botany 42: 1235-1249.

Indriawan, A. 2018. Pemanfaatan lipase untuk transesterifikasi ester asam lemak oleh isolate kapang limbah kernal dan nut kelapa sawit (Elaeis guineensis Jacq.). Thesis, Indonesia University of Indonesia (Unpublished).

José, C., Bonetto, R.D., Gambaro, L.A., Guauque Torres, M.P., Foresti, M.L., Ferreira, M.L. & Briand, L.E. 2011. Investigation of the causes of deactivation–degradation of the commercial biocatalyst Novozym® 435 in ethanol and ethanol-aqueous media. Journal of Molecular Catalysis B: Enzymatic 71(3-4): 95-107.

Karanam, S.K. & Medicherla, N.R. 2008. Enhanced lipase production by mutation induced Aspergillus japonicus. African Journal of Biotechnology 7: 2064-2067.

Kotogan, A., Nemeth, B., Vagvolgyi, C., Papp, T. & Tako, M. 2014. Screening for extracellular lipase enzymes with transesterification capacity in Mucoromycotina strains. Food Technology & Biotechnology 52: 73-82.

Kumar, A., Dhar, K., Kanwar, S.S. & Arora, P.K. 2016. Lipase catalysis in organic solvents: Advantages and applications. Biological Procedures Online 18: 2.

Linfield, W.M., O'Brien, D.J., Serota, S.& Barauskas, R.A. 1984. Lipid-lipase interaction. I. Fat splitting with lipase from Candida rugosa. Journal of the American Oil Chemists’ Society 61: 1067-1071.  

Lotrakul, P. & Dharmsthiti, S. 1997. Purification and characterization of lipase from Aeromonas sobria LP004. Journal of Biotechnology 54(2): 113-120.

Nabilasani, G.C., Trismilah, Suhendar, D. & Mubarik, N.R. 2019. Produksi lipase dari isolat kapang hasil mutasi untuk transesterifikasi. Jurnal Bioteknologi & Biosains Indonesia 6(1): 20-28.

Nugraha, F., Roslim, D.I., Ardilla, Y.P. & Herman. 2014. Analisis sebagian sekuen gen Ferritin2 pada padi (Oryza sativa L.), Indragiri Hilir, Riau. Biosaintifika Journal of Biology & Biology Education 6(2): 70-79.

Ozturk, B. 2001. Immobilization of lipase from Candida rugosa on hydrophobic and hydrophilic supports. Dissertation, İzmir Institute of Technology (Unpublished).

Pratuangdejkul, J. & Dharrnsthiti, S. 2000. Purification and characterization of lipase from psychrophilic Acinetobacter calcoaceticus LP009. Microbiological Research 155(2): 95-100.

Puspitaningati, S.R., Permatasari, R. & Gunardi, I. 2013. Pembuatan biodiesel dari minyak kelapa sawit dengan menggunakan katalis berpromotor ganda berpenyangga γ-alumina (CaO/KI/γ-Al2O3) dalam reaktor fludized bed. Jurnal Teknik POMITS 2: 193-197.  

Rajakumara, E., Acharya, P., Ahmad, S., Sankaranaryanan, R. & Rao, N.M. 2008. Structural basis for the remarkable stability of Bacillus subtilis lipase (Lip A) at low pH. Biochimica et Biophysica Acta 1784(2): 302-311.

Rajan, A. & Nair, A.J. 2011. A comparative study on alkaline lipase production by a newly isolated Aspergillus fumigatus MTCC 9657 in submerged and solid-state fermentation using economically and industrially feasible substrate. Turkish Journal of Biology 35: 569-574. 

Rao, S., Sharma, A.K., Ritika & Bati, N. 2019. Enhancement of lipase production by ethyl methanesulfonate mutagenesis of soil fungal isolate. Plant Science Today 6(1): 600-606.

Sethi, B.K., Nanda, P.K. & Sahoo, S. 2016. Characterization of biotechnologically relevant extracellular lipase produced by A. terreus NCFT 4269.10. Brazilian Journal of Microbiology 47: 143-149.

Shah, H., Zhang, C., Khan, S., Patil, P.J., Li, W., Xu, Y., Ali, A., Liang, E. & Li, X. 2024. Comprehensive insights into microbial lipases: Unveiling structural dynamics, catalytic mechanism, and versatile applications. Current Microbiology 81: 394.

Sharma, R., Soni, S.K., Vohra, R.M., Gupta, L.K. & Gupta, J.K. 2002. Purification and characterization of a thermostable alkaline lipase from a new thermophilic Bacillus sp. RSJ-1. Process Biochemistry 10: 1075-1084.

Shu, Z-Y., Yang, J-K. & Yan, Y-J. 2007. Purification and characterization of a lipase from Aspergillus niger F044. Chinese Journal of Biotechnology 23(1): 96-101.

Sreeju, S.N., Babu, M.M., Mariappan, C. & Selvamohan, T. 2011. Effect of physical and chemical mutagens on biopolymer producing strains and RAPD analysis of mutated strains. Archives of Applied Science Research 3(6): 233-246.

Sundaramahalingam, M.A., Amrutha, C., Sivashanmugam, P. & Rajeshbanu, J. 2021. An encapsulated report on enzyme‑assisted transesterification with an allusion to lipase. 3 Biotechnology 11: 481.

Suryanto, A., Suprapto, S. & Mahfud, M. 2015. The production biofuels from coconut oil using microwave. Modern Applied Science 9: 93-98.

Tagore, P.R. & Narasum, L.M. 2014. Isolation and development of a soil fungal strain with high lipolytic activity by mutation. International Journal of Pharmaceutical, Chemical & Biological Sciences 4: 1-8.

Tran, D.T., Yeh, K.L., Chen, C.L. & Chang, J.S. 2012 Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresource Technology 108: 119-127. 

Uyar, G.E.Ö. & Uyar, B. 2019. Effects of ethanol and ultraviolet-c treatments on inactivation of Rhizopus oryzae spores which cause postharvest rot. Food Science Technology 39(3): 691-695.

Wang, B., Wang, B., Shukla, S.K. & Wang, R. 2023. Enabling catalysts for biodiesel production via transesterification. Catalysts 13(4): 740. 

 

*Corresponding author; email: tris001@brin.go.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next