Sains Malaysiana 54(12)(2025): 2837-2846
http://doi.org/10.17576/jsm-2025-5412-03
Enhanced Production
of Lipase from ‘NC Mutant’ Moulds for
Transesterification Reactions(Peningkatan Penghasilan Lipase daripada Kulat Mutant NC untuk Tindak Balas Transesterifikasi)
NISA
RACHMANIA MUBARIK3,
TRISMILAH SISWODARSONO2,* & GALIH CENDANA NABILASANI1
1Study
Program of Biotechnology, Graduate School of IPB University, Bogor 16680,
Indonesia
2Center for Bioindustrial Technology-BRIN (National Innovation Research Agency), Bld.610-614 PUSPIPTEK,
South Tangerang, Banten, Indonesia
3Department
of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor
16680, Indonesia
Received: 25 February 2024/Accepted: 17 November 2025
Abstract
Lipase can be used for biodiesel production, specifically in
transesterification reactions. Nut C (NC) is a fungal isolate derived from palm
kernels and palm kernel waste, capable of producing lipase. The objective of
this study was to obtain a mutant mould with higher transesterification
activity compared to its wild type counterpart (NC). The mutation process on NC
mould was carried out using ultraviolet (UV) radiation followed by ethyl
methane sulfonate (EMS). UV-induced mutation on NC produced four isolates, with
m4.3NC1 exhibiting higher transesterification activity than the wild type, with
an increment of 138.8% (from 0.121 U/mg to 0.168 U/mg). Subsequent EMS mutations
of the mutant m4.3NC1 isolate, designated as m5.4NC, increased the transesterification
activity from 0.168 U/mg to 2.048 U/mg (1119% increment as compared to the wild
type). Molecular identification of the NC isolate showed 100% similarity with
the Aspergillus fumigatus CMXY15837 strain. The highest specific enzyme
activity of the NC mutant was observed at pH 6 and a temperature of 50 °C. This
study showed that the mutation of NC mould using UV, followed by EMS,
significantly enhanced its transesterification activity.
Keywords: Ethyl methane
sulfonate; lipase; NC mutant mould; transesterification reaction; ultraviolet
Abstrak
Lipase boleh digunakan untuk pengeluaran biodiesel,
khususnya dalam tindak balas transesterifikasi. Nut C (NC) ialah pencilan kulat
yang diperoleh daripada isirung sawit dan sisa isirung sawit yang mampu
menghasilkan lipase. Objektif kajian ini adalah untuk mendapatkan kulat mutan
yang mempunyai aktiviti transesterifikasi yang lebih tinggi berbanding jenis
liarnya (NC). Proses mutasi pada kulat NC dijalankan menggunakan sinaran
ultraungu (UV) diikuti oleh etil metana sulfonat (EMS). Mutasi akibat UV pada
NC menghasilkan empat pencilan dengan m4.3NC1 menunjukkan aktiviti
transesterifikasi yang lebih tinggi daripada jenis liar, dengan kenaikan sebanyak
138.8% (daripada 0.121 U/mg kepada 0.168 U/mg). Mutasi EMS seterusnya terhadap pencilan
m4.3NC1 mutan yang ditetapkan sebagai m5.4NC meningkatkan aktiviti
transesterifikasi daripada 0.168 U/mg kepada 2.048 U/mg (kenaikan 1119% berbanding
jenis liar). Pengenalpastian molekul bagi pencilan NC mendedahkan 100%
persamaan dengan strain Aspergillus fumigatus CMXY15837. Aktiviti enzim khusus
tertinggi mutan NC diperhatikan pada pH 6 dan suhu 50 °C. Kajian ini
menunjukkan bahawa mutasi terhadap mutan NC menggunakan UV diikuti oleh EMS telah
meningkatkan aktiviti transesterifikasi dengan ketara.
Kata kunci: Etil metana sulfonat; kulat mutan NC; lipase; tindak
balas transesterifikasi; ultralembayung
REFERENCES
Adham, N.Z.
& Ahmed, E.M. 2009. Extracellular lipase of Aspergillus niger NRRL3; production, partial purification and
properties. Indian Journal of Microbiology 49(1): 77-83.
Asci, F.,
Aydin, B., Akkus, G.U., Unal,
A., Endorgmus, S.F., Korcan,
S.E. & Jahan, I. 2020. Fatty acid methyl ester analysis of Aspergillus
fumigatus isolated from fruit pulps for biodiesel production using GC-MS
spectrometry. Bioengineered 11(1): 408-415.
Aziz, R., Aisyah, A.
& Ilyas, A. 2016. Sintesis metil ester dari minyak biji Kemiri (Aleurites molluccana) menggunakan metode ultrasonokimia. Al-Kimia 4(1): 21-30.
Banerjee, A., Singh, V., Solanki, K., Mukherjee, J.
& Gupta, M.N. 2013. Combi-protein coated microcrystals of lipases for
production of biodiesel from oil from spent coffee grounds. Sustainable
Chemical Processes 1: 14.
Chandra, P., Enespa, Singh, R. & Arora, P.K.
2020. Microbial lipases and their industrial applications:
A comprehensive review. Microbial Cell Factories 19(1): 169.
Colla,
L.M., Ficanha, A.M., Rizzardi,
J., Bertolin, T.E., Reinehr,
C.O. & Costa, J.A. 2015. Production and characterization of lipases by two
new isolates of Aspergillus through solid-state and submerged
fermentation. Biomed Research International 2015: 725959.
Collin, V.L., Baigori, M.D. & Pera, L.M.
2011. Mycelium-bound lipase production from Aspergillus niger MYA 135 and its potential applications for
the transesterification of ethanol. Journal of
Basic Microbiology 51(3): 236-242.
Daniel, R.M., Peterson, M.E., Danson, M.J., Price,
N.C. Kelly, S.M., Monk, C.R., Weinberg, C.S., Oudshoorn,
M.L. & Lee, C.K. 2010. The molecular basis of the effect of temperature on
enzyme activity. Biochemical Journal 425: 353-360.
El-Batal, A.I., Farrag, A.A., Elsayed, M. & El-Khawaga, A. 2016. Biodiesel production by Aspergillus niger lipase immobilized on barium ferrite magnetic nanoparticles. Bioengineering (Basel) 3(2): 14.
Eregie,
S.B., Sanusi, I.A., Kana, G.E.B. & Olaniran, A.O. 2024. Effect of
ultra‑violet light radiation on Scenedesmus vacuolatus growth kinetics, metabolic performance, and preliminary biodegradation study. Biodegradation 35: 71-86.
Goto, N., Bazar, G., Kovacs, Z., Kunisada, M., Morita, H., Kizaki, S., Sugiyama, H., Tsenkova, R. & Nishigori, C. 2015. Detection of UV-induced cyclobutane pyrimidine dimers by
near-infrared spectroscopy and aquaphotomics. Scientific Reports 5: 11808.
Ifadah, R.A., Kusnadi,
J. & Wijayanti, S.D. 2016. Strain improvement Acetobacter xylinum menggunakan ethyl methane
sulfonate (EMS) sebagai upaya peningkatan produksi selulosa bakteri. Agroindustry Food Journal 4(1): 273-282.
Iftikhar, T., Niaz, M., Abbas, S.Q., Zia, M.A., Ashraf, I., Lee, K.J. & Haq, I.U. 2010. Mutation-induced
enhanced biosynthesis of lipases by Rhizopus oligosporus var. microsporus. Pakistan Journal
of Botany 42: 1235-1249.
Indriawan, A. 2018. Pemanfaatan lipase untuk transesterifikasi ester asam lemak oleh isolate kapang limbah kernal dan nut kelapa sawit (Elaeis guineensis Jacq.). Thesis, Indonesia University of
Indonesia (Unpublished).
José,
C., Bonetto, R.D., Gambaro, L.A., Guauque Torres,
M.P., Foresti, M.L., Ferreira, M.L. & Briand,
L.E. 2011. Investigation of the causes of deactivation–degradation of the
commercial biocatalyst Novozym® 435
in ethanol and ethanol-aqueous media. Journal of Molecular Catalysis B:
Enzymatic 71(3-4): 95-107.
Karanam, S.K. & Medicherla,
N.R. 2008. Enhanced lipase production by mutation induced Aspergillus
japonicus. African Journal of Biotechnology 7: 2064-2067.
Kotogan, A., Nemeth, B., Vagvolgyi, C., Papp, T. & Tako,
M. 2014. Screening for extracellular lipase enzymes with transesterification capacity in Mucoromycotina strains. Food Technology & Biotechnology 52: 73-82.
Kumar, A., Dhar, K., Kanwar, S.S. & Arora, P.K.
2016. Lipase catalysis in organic solvents: Advantages and applications. Biological
Procedures Online 18: 2.
Linfield, W.M., O'Brien, D.J., Serota, S.& Barauskas, R.A. 1984. Lipid-lipase interaction. I. Fat splitting with lipase from Candida rugosa. Journal of the American Oil Chemists’ Society 61: 1067-1071.
Lotrakul, P. & Dharmsthiti,
S. 1997. Purification and characterization of lipase from Aeromonas sobria LP004. Journal of Biotechnology 54(2): 113-120.
Nabilasani,
G.C., Trismilah, Suhendar,
D. & Mubarik, N.R. 2019. Produksi lipase dari isolat kapang hasil mutasi untuk transesterifikasi. Jurnal Bioteknologi & Biosains Indonesia 6(1): 20-28.
Nugraha,
F., Roslim, D.I., Ardilla,
Y.P. & Herman. 2014. Analisis sebagian sekuen gen Ferritin2 pada padi (Oryza sativa L.), Indragiri Hilir, Riau. Biosaintifika Journal
of Biology & Biology Education 6(2): 70-79.
Ozturk, B. 2001. Immobilization of lipase from Candida rugosa on
hydrophobic and
hydrophilic supports. Dissertation, İzmir Institute of Technology
(Unpublished).
Pratuangdejkul,
J. & Dharrnsthiti, S. 2000. Purification
and characterization of lipase from psychrophilic Acinetobacter calcoaceticus LP009. Microbiological Research 155(2):
95-100.
Puspitaningati, S.R., Permatasari, R. & Gunardi, I. 2013. Pembuatan biodiesel dari minyak kelapa sawit dengan menggunakan katalis berpromotor ganda berpenyangga γ-alumina
(CaO/KI/γ-Al2O3) dalam reaktor fludized bed. Jurnal Teknik POMITS 2: 193-197.
Rajakumara,
E., Acharya, P., Ahmad, S., Sankaranaryanan, R. & Rao,
N.M. 2008. Structural basis for the remarkable stability of Bacillus
subtilis lipase (Lip A) at low pH. Biochimica et Biophysica Acta 1784(2): 302-311.
Rajan, A. & Nair, A.J. 2011. A comparative study on alkaline
lipase production by a newly isolated Aspergillus
fumigatus MTCC 9657 in submerged and solid-state fermentation using
economically and industrially feasible substrate. Turkish Journal of Biology 35:
569-574.
Rao, S., Sharma, A.K., Ritika & Bati, N. 2019.
Enhancement of lipase production by ethyl methanesulfonate mutagenesis of soil fungal isolate. Plant Science Today 6(1): 600-606.
Sethi, B.K., Nanda, P.K. & Sahoo, S. 2016. Characterization
of biotechnologically relevant extracellular
lipase produced by A. terreus NCFT 4269.10. Brazilian Journal of Microbiology 47: 143-149.
Shah,
H., Zhang, C., Khan, S., Patil, P.J., Li, W., Xu, Y., Ali, A., Liang,
E. & Li, X. 2024. Comprehensive insights into microbial lipases: Unveiling
structural dynamics, catalytic mechanism, and versatile applications. Current
Microbiology 81: 394.
Sharma, R., Soni, S.K., Vohra, R.M., Gupta, L.K. & Gupta, J.K. 2002. Purification and characterization of a thermostable
alkaline lipase from a new thermophilic Bacillus sp. RSJ-1. Process
Biochemistry 10: 1075-1084.
Shu, Z-Y., Yang, J-K. &
Yan, Y-J. 2007.
Purification and characterization of a lipase from Aspergillus niger F044. Chinese Journal of Biotechnology 23(1):
96-101.
Sreeju, S.N., Babu, M.M., Mariappan, C. & Selvamohan, T. 2011. Effect of
physical and chemical mutagens on biopolymer producing strains and RAPD
analysis of mutated strains. Archives of
Applied Science Research 3(6): 233-246.
Sundaramahalingam, M.A., Amrutha, C., Sivashanmugam,
P. & Rajeshbanu, J. 2021. An encapsulated report
on enzyme‑assisted transesterification with an allusion to lipase. 3
Biotechnology 11: 481.
Suryanto, A., Suprapto, S. & Mahfud, M.
2015. The production biofuels from coconut oil using microwave. Modern Applied Science 9: 93-98.
Tagore, P.R. & Narasum, L.M. 2014. Isolation and
development of a soil fungal strain with
high lipolytic activity
by mutation. International Journal of Pharmaceutical, Chemical & Biological Sciences 4: 1-8.
Tran, D.T., Yeh, K.L., Chen, C.L. & Chang, J.S. 2012 Enzymatic transesterification of microalgal
oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Bioresource Technology 108: 119-127.
Uyar,
G.E.Ö. & Uyar, B. 2019. Effects of ethanol and ultraviolet-c treatments on
inactivation of Rhizopus oryzae spores which cause postharvest rot. Food
Science Technology 39(3): 691-695.
Wang,
B., Wang, B., Shukla, S.K. & Wang, R. 2023. Enabling catalysts for
biodiesel production via transesterification. Catalysts 13(4): 740.
*Corresponding author; email: tris001@brin.go.id